
Mitigation of Coincident Peak Charges via Approximate Dynamic

Programming

Chase P. Dowling and Baosen Zhang

Abstract— A significant portion of a consumer’s annual
electrical costs can be made up of coincident peak charges:
a transmission surcharge for power consumed when the entire
system is at peak demand. This charge occurs only a few times
annually, but with per-MW prices orders of magnitudes higher
than non-peak times. While predicting the moment of peak
demand charges over the course of the entire billing period
is possible, optimal cost mitigation strategies based on these
predictions have not been explored. In this paper we cast
coincident peak cost mitigation as an optimization problem and
analyze conditions for optimal and near-optimal policies for
mitigation. For small consumers we use approximate dynamic
programming to first show the existence of a near-optimal policy
and second train a neural policy for curtailing coincident peak
charges when subject to ramping constraints.

I. INTRODUCTION

A coincident peak (CP) is a consumer’s electrical demand

at the time of the total system peak demand. Since much

of the power system infrastructure is only used only during

peak times [1], some system operators and utilities use CP

pricing mechanisms to incentivize customers to reduce their

consumption during peak times, therefore hoping to achieve

an overall reduction of the system peak [2], [3]. Existing

CP charges are applied through a rate structure, with the

rates at peak times hundreds of times larger than at regular

times. As a result, CP charges often account for a significant

portion—often greater than 20%—of annual electrical costs

for participating customers [4], providing them with a strong

incentive to reduce their consumption at these peak times [5],

[6].

In this paper, we adopt the view point of a small cus-

tomer facing CP charges and study how the customer can

operationally mitigate this cost. The primary challenge is

that the timing of the CP charges are only known after all

of the system demands have been realized. For example, if

CP is charged on a monthly basis [3], the hour that the peak

load occurred in only determined after the entire month has

passed.

To mitigate this uncertainty in peak timing, operators

typically provide warning signals to consumers to indicate

peak is forthcoming. In [4], the authors utilize these signals

to develop a scheduling model for a data center’s workload in

the Fort Collins PUD [3]. However, forecasting when a peak

will occur is a difficult prediction problem [7], [8], since it

only occurs (by definition) at a single point in time. Since

the rate associated with the CP is orders of magnitude higher

Department of Electrical and Computer Engineering, University of Wash-
ington Seattle, WA 98195, USA {cdowling, zhangbao}@uw.edu

This work is partially supported by grants from Centrica, plc.

than normal time-of-use rates, false negative predictions are

extremely costly. Therefore operators tend to send out many

successive CP warning signals, degrading the efficiency of

customer responses and leading to user fatigue in the long

run [9], [6].

In this work we treat the problem of mitigating CP costs

as an optimization problem that is continually solved over

the entire horizon of the billing period. Instead of explicitly

predicting when the peak will occur, we adopt a probabilistic

framework to gracefully incorporate observations made by

the customer to maximize their expected revenue. That

is, at each time-step we calculate the probability of the

peak occurring at some point in the future having observed

previous values of system demand.

Related works on mitigating CP pricing focus on large

consumers with considerable demand flexibility, namely,

data centers [10]. Limited works have addressed CP prices

for data center consumers directly such as [4] which in-

corporates existing grid operator signals. Others related to

data center peak power consumption address the problem

generally based on time-of-use costs given on-site storage

or generation capabilities [11], [12] without tackling the

idiosyncrasies of CP pricing mechanisms.

Dynamic programming is a natural approach to maximize

the expected revenue of a small customer in the face of

CP timing uncertainty. However, since the action space

of a customer is continuous and coupled in time, solving

the dynamical programming problem becomes intractable.

Therefore we approximate the value function and train a

deterministic policy parametrized as a neural network. Based

on the structure of the CP charge, we design the input of

the neural network to explicitly include the maximum of the

observed demand and the number of time periods. Using

these inputs, we show that this neural network based policy

is comparable to a brute force grid search and outperforms a

standard benchmark algorithm. This approach advances the

state-of-the-art by providing a way to actively reduce the CP

cost that does not rely on system warning signals or assumes

an adversarial environment.

The rest of the paper is organized as follows: Section II

defines the optimization problems to be solved, Section III

provides the solution framework, Section IV presents a

numerical case study. We conclude with a discussion on

future work for both large and small consumers and make

some final remarks in Section V.

ar
X

iv
:1

9
0
8
.0

0
6
8
5
v
1

[m

at
h
.O

C
]

 2
 A

u
g
 2

0
1
9

B. Benchmark Algorithm

There are two typical strategies to solve (3) in practice.

The first is to simply assume that all time periods (e.g.,

all hours between 3 PM and 7 PM on a hot summer day)

experience the peak demand and conservatively reduce the

load to mitigate the CP charge [6]. The the CP charge

is evenly distributed over all of these time intervals. The

second is to follow the warning signals of operators and treat

those as true peak times [3], [4]. It turns out that these two

strategies amount to the same thing, since operators tend to

be conservative and issue CP warnings for all of the time

periods that have a reasonable chance of experiencing the

moment of peak demand [3]. This is to say that conservative

CP warnings amount to treating any hot summer afternoon,

for example, as equally likely to the system peak without

taking into joint consideration the known system capacity

and previously observed system loads during the billing

window. Therefore we adopt the following strategy as the

a baseline algorithm which we call the naive strategy [8],

where the customer solves

max
xt

g(xt)−
1

T
πcpxt, (4)

where the scaling factor 1/T represents the fact that the cost

of CP is amortized evenly to all of the time periods under

consideration. The optimal solution is then the the demand

that satisfies the first order optimality condition Tg′(x∗) −
πcp = 0.

Note even though this solution is simple to compute,

it does not take into account the successive realization

in the system load and is generally suboptimal. In later

comparisons, we will call it the naive policy. In the next

section, we develop a policy based on approximate dynamic

programming to solve (3).

III. APPROXIMATE DYNAMIC PROGRAMMING

A. Dynamic Programming Formulation

Let us first directly apply a dynamic programming ap-

proach to optimize (2). Suppose the customer is solving

for the optimal xT , having already chosen x1, . . . , xT−1 at

the final step t = T − 1. The customer must maximize

the expected reward conditioned on observed system load

realizations, s1, . . . , sT−1, specifically, E[R|s1, . . . , sT−1].
At t = T−1, let sm = max{s1, . . . , sT−1}, the maximum

observed so far; since this is the final round, the expected

reward depends only on whether sT will be larger than sm.

Let pT = 1 − P (sm < ST), the probability that the final

system load realization will be the CP. Then the objective,

E[R|sm] =
∑

t=1,...T−1

g(xt) + g(xT)− πcpE [xt∗ |sm] (5a)

=
∑

t=1,...T−1

g(xt) + g(xT)− (5b)

πcp[(1− pT)xt∗ + pTxT]. (5c)

Thus, for the solution x′

T to g(x′

T) − πcppT = 0, the

optimal x∗

T is the point in the interval [xT−1 − δ, xT−1 + δ]

which minimizes |x′

T − x∗

T |. At t = T − 2, in order to solve

for the optimal x∗

T−1
there are two potential rounds that the

CP may yet occur on and the customer must consider the

probability that either ST or ST−1 is the CP. Indeed,

E[R|s1, . . . , sT−2] =
∑

t=1,...,T−2

g(xt) + g(xT−1)+ (6a)

E[g(xT)− πcp[(1− pT)xt∗ + pTxT]],
(6b)

noting that xT remains inside the expectation since it de-

pends on the realization of ST−1. Iterating backwards yields

a dependency on future realizations of St, where only the

current consumption xt, maximum system load observed

thus far sm, and number of rounds remaining T−t influence

future choices of xt+1, . . . , xT .

A straightforward means of addressing this would be a

brute force grid search. Consumption values in [x, x̄] and a

range of likely system loads St can be discretized, with every

potential outcome being computed forward from each possi-

ble initial value x1. At each time a consumer would choose a

feasible xt+1 subject to ramping constraints that maximizes

the expected reward over the entire horizon T for all possible

outcomes given s1, . . . , st using the output of the grid search

as a look-up table; however, a complete grid search exhibits

exponential complexity in T . This dimensionality problem is

common in applications of dynamic programming [17].

Therefore we propose an approximate dynamic program-

ming approach by sampling from all possible outcomes in

order to estimate the best choices of xt+1. These samples are

used to train a policy f , which takes as input at time t the

current consumption xt, the largest system load observed so

far in the billing period sm, and the number of rounds left,

T−t. The policy then outputs an estimated optimal x̂t+1. We

note that in the absence of these time coupling constraints,

an optimal solution exists since each time-step is completely

independent.

B. Neural Network Policy

Neural networks have gained popularity as a tractable way

to parameterize policies. For example, they have been used to

solve approximate dynamic programming problems in [17],

[18], [19]. We also adopt a neural network based policy to

solve (3). In the context of dynamic programming, a policy

is a function that maps previous values to an action. In our

case, this policy should map the current choice of xt and

observations of st to an output xt+1 that a customer should

select as their demand based on, in this case, criterion that

maximizes their expected reward over the remaining time

horizon. A policy in the context of approximate dynamic

programming attempts to output a value x̂t+1 that is close

to optimal.

Therefore, in order to train a policy f we require an

approximation of the true optimal output x∗

t+1 of f that

maximizes expected reward R given previous observations

of s. Alg. 1 details the process by which these samples

are generated. At time t, for each feasible value of xt+1

